

TEMPERATURE INDEPENDENT SNOW PRODUCTION - POSSIBILITIES AND NEEDS

2017-11-09, Trondheim

Petter Nekså and Stian Trædal, SINTEF Energy Research

Contact: Petter.Neksa@sintef.no and Stian.Tradal@sintef.no

Foto: Norges Skiforbund

How we like to see it

Possible skiing days in Selbu

What will the future bring?

Hans Olav Hygen 2015-01-09

What will the future bring?

- Climatic perspective
- Weather forecast 2050
- Norwegian Metrological Institute

History and background

Vinterarbeid for mange mann i iseksportens glanstid.

- Norway has a long tradition of exporting natural ice (1825) and ice production
- After the second world war, the development of freezing plants became important for the fishing industry
- 250,000 tons of ice are exported annually along with fresh salmon
- The refrigeration technology community at NTNU and SINTEF has improved and developed new technology since the 1950s

Temperature dependent snow production

- When conditions are suitable, snow guns are relatively efficient and with an acceptable power demand
- Snow guns require temperatures well below 0°C
- More often, the conditions are not suitable at important locations

	Relative humidity (%)																			
		10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
	4	-2,4	-2,0	-1,6	-1,3	-0,9	-0,6	-0,2	0,2	0,5	0,9	1,2	1,6	2,0	2,3	2,6	3,0	3,3	3,7	4,0
	3	-3,1	-2,7	-2,3	-2,0	-1,7	-1,3	-1,0	-0,6	-0,3	0,0	0,4	0,7	1,0	1,4	1,7	2,0	2,4	2,7	3,0
lii.	2	-3,7	-3,4	-3,1	-2,7	-2,4	-2,1	-1,7	-1,4	-1,1	-0,8	-0,5	-0,2	0,1	0,4	0,8	1,1	1,4	1,7	2,0
-	1	-4,4	-4,1	-3,8	-3,5	-3,1	-2,8	-2,5	-2,2	-1,9	-1,6	-1,3	-1,0	-0,7	-0,5	-0,2	0,1	0,4	0,7	1,0
-	0	-5,1	-4,8	-4,5	-4,2	-3,9	-3,6	-3,3	-3,0	-2,7	-2,5	-2,2	-1,9	-1,6	-1,3	-1,1	-0,8	-0,5	-0,3	0,0
	-1	-5,8	-5,5	-5,3	-5,0	-4,7	-4,4	-4,1	-3,9	-3,6	-3,3	-3,1	-2,8	-2,5	-2,3	-2,0	-1,8	-1,5	-1,3	-1,0
	-2	-6,5	-6,3	-6,0	-5,7	-5,5	-5,2	-5,0	-4,7	-4,5	-4,2	-4,0	-3,7	-3,5	-3,2	-3,0	-2,7	-2,5	-2,2	-2,0
	-3	-7,3	-7,0	-6,8	-6,5	-6,3	-6,0	-5,8	-5,6	-5,3	-5,1	-4,8	-4,6	-4,4	-4,1	-3,9	-3,7	-3,5	-3,2	-3,0
	-4	-8,0	-7,8	-7,6	-7,3	-7,1	-6,9	-6,6	-6,4	-6,2	-6,0	-5,7	-5,5	-5,3	-5,1	-4,9	-4,6	-4,4	-4,2	-4,0
	-5	-8,8	-8,6	-8,3	-8,1	-7,9	-7,7	-7,5	-7,3	-7,1	-6,8	-6,6	-6,4	-6,2	-6,0	-5,8	-5,6	-5,4	-5,2	-5,0
	-6	-9,5	-9,3	-9,1	-8,9	-8,7	-8,5	-8,3	-8,1	-7,9	-7,7	-7,5	-7,3	-7,1	-7,0	-6,8	-6,6	-6,4	-6,2	-6,0
	-7	-10,3	-10,1	-9,9	-9,7	-9,6	-9,4	-9,2	-9,0	-8,8	-8,6	-8,4	-8,3	-8,1	-7,9	-7,7	-7,5	-7,4	-7,2	-7,0
-	-8	-11,1	-10,9	-10,7	-10,6	-10,4	-10,2	-10,0	-9,9	-9,7	-9,5	-9,3	-9,2	-9,0	-8,8	-8,7	-8,5	-8,3	-8,2	-8,0
	-9	-11,9	-11,7	-11,6	-11,4	-11,2	-11,1	-10,9	-10,7	-10,6	-10,4	-10,3	-10,1	-9,9	-9,8	-9,6	-9,5	-9,3	-9,2	-9,0

Good conditions

Poor conditions

No snowmaking

Project Phase I

Temperature independent snow production

- Technology exist from several suppliers
- Benefits
 - Guarantee season opening dates together with snow storage or as stand alone system
 - Provide snow during mild winters
 - Can be used as a top layer on low quality snow from storage
- Use of the ice machine as a heat pump?

Temperature independent snow production

- There are several commercial systems available, based on:
 - Flake ice
 - Plate ice
 - Scraped surface ice slurry
 - Vacuum ice slurry
- The existing systems are energy intensive and have a low production capacity compared to traditional snow guns
- Good potential to improve the energy efficiency of the systems
 - Process optimization
 - Component design
 - Utilization of surplus heat

Snow production from surplus heat

- Snow can be produced using heat as the main energy source in areas where there is an excess amount of heat. Possible technologies include:
 - Vacuum ice slurry with an ejector to maintain vacuum in the freezer
 - Ice generators based on absorption refrigeration cycles
- Can practical systems be developed for lower temperature heat sources, e.g. < 100'C

Temperature independent snow production

- Activities in Phase I and planned continued in Phase II
- Focal points related to technology for temperature independent snow production (TIS)
 - Increased efficiency, components and systems
 - Environmentally benign natural working fluids
 - Systems for integrated heat production

Project Phase I

Smart integrated snow systems

Computer model for snow planning and evaluation

Climate data

- Temperature
- Humidity
- Precipitation

Information about facility

- Snow covered area
- Required snow depth
- Special snow requirements
- Water supply
- Specifications for existing equipment
- Snow storage capabilities
- Season period
- Planned events

Available resources and demands

- District heating network
- Heat demands

Simulation tool including models for:

- Natural snow precipitation
- Temperature dependent snow production
- Temperature independent snow production
- Snow storage
- Snow melting
- Surplus heat utilization
 - Local heat demands
 - District heating

Results

- Required snow production
 - Temperature dependent and independent
- Snow amount through the year
- Power consumption
- Surplus heat utilization
- Cost estimation (OPEX/ CAPEX)
- Variation of demands through season

Simulation tool applications

- Find the optimal combination of natural snow, traditional snow production, temperature independent snow production, snow storage and heat integration for new and existing ski facilities, by optimizing:
 - Snow reliability
 - Energy efficiency
 - Environmental impact
 - Investment costs
 - Operational costs
- Study the probability and consequences of periods with little natural snow and high temperatures before planned events
- Case studies:
 - Different locations
 - Future climate scenarios
 - Sensitivity studies for area development scenarios

Example case based on Granåsen development plans

Climate data: Granåsen 2010 – 2015

Season dates: 15.11 – 01.04

Snow covered area: 97 700 m²

Snow in ski runs: 50 000 m³

Snow reserves: 24 000 m³

Off-season snow storage: 24 000 m³

Max temperature dependent snow production:
 7200 m³/day (Tw < -3 °C)

 Temperature independent snow production capacity: 140 m³/day

Heat demand from:

- Cross country arena building (3000 m²)
- Ski jumping arena building (4000 m²)
- Football hall (11000 m²)
- Swimming pool (1.8 GWh)

Surplus heat vs heat demand in season

- Heat utilization requires large local heat demands to be beneficial
- May need thermal storage systems to bridge peaks and periods with lower demands

Snow amount and distribution between temperature dependent, temperature independent and natural snow (2010 - 2015)

Summary and conclusions

- The reliability of natural snow precipitation and the number of potential snow production days with traditional snow canons are decreasing
- New concepts to ensure snow reliability will be required (snow storage, etc)
- TIS (temperature independent snow production) will be an important supplement
- Technologies for TIS exist from several vendors
 - Potential for increased energy efficiency
 - Use of environmentally benign refrigerants
 - Further investigation in Phase II
- Utilisation of the TIS machine as a heat pump to cover local heat demands can be an important possibility
 - Snow as a bi-product
- Computer models for "Smart integrated snow systems" will be an important tool for concept development and optimisation (Phase II)

Thank you for your attention

