

Heat-driven show production applying ejector and natural refrigerant

Ailo Aasen Snow for the Future – final workshop 2022-10-26, Granåsen

Technical snowmaking

- Artificial snowmaking is used in 90% of ski resorts
- Many of today's snowmaking technologies rely on cold ambient temperatures
 - Temperature-dependent snowmaking
- Global warming yields fewer cold days
 - Length of snow season decreasing 5 days/decade since 1970
- Desirable properties of snowmaking
 - Low environmental footprint, e.g. low electricity consumption
 - Possibility to function at ambient temperatures above 0 °C
 - Should only involve natural working media

Temperature-independent snowmaking

- Systems that produce snow at any ambient temperature
- Two general approaches:
 - 1. Chilling water below the freezing point using some closed-cycle chiller, e.g. vapor-compression chiller
 - 2. The vacuum ice slurry method, where cooling happens by drawing off water vapor until the triple point is reached
- The vacuum method enables using a heat-driven chiller, which dramatically lowers electricity consumption compared to vapor-compression chillers

Heat-driven chillers - basic idea

- Combination of
 - Heat engine
 - Heat pump
- Mediated by some external work $W_{
 m ext}$
- Reversible coefficient of performance:

$$COP_{id} = \frac{Q_e}{W_{ext} + Q_g} = \frac{T_e}{T_c - T_e} \frac{T_g - T_c}{T_g}$$

Vacuum ice freezing technique

• Snowmaking based on an open cycle

• Triple point: T = 0.01 °C, P = 611 Pa

 Enthalpy balance in freezing chamber yields the ratio of mass flows:

$$\frac{\dot{m}(\text{ice})}{\dot{m}(\text{vapor})} \approx 7$$

 Low pressures ⇒ large vapor volumes and expensive compressors

Vacuum ice freezing using ejector

- Compressor replaced by ejector
 - Lower CAPEX, OPEX
 - More reliable due to no moving parts
- Process integration
- OPEX depends on
 - Cost and temperature of heat source
 - Cost and temperature of cooling water
- How does COP depend on the heat source and cooling water temperatures?

Ejector model

- State-based model
- Homogeneous thermodynamic equilibrium at each state

- Both streams choke prior to mixing
- Transition from supersonic to subsonic flow in a single, normal shock

Modelling assumptions

- 5 K temperature difference in heat exchangers
- Two condenser temperatures: 30 °C, 15 °C
 - Corresponding to cooling water at 25 °C, 10 °C
- Three generator temperatures: 150 °C, 110 °C, 80 °C

Results of simulating ejector freezing cycle

Cold cooling water is extremely important

Temperature of heat input is less important

Heat demand vs heat temperature, for two condenser temperatures

Results of simulating ejector freezing cycle

Heat demand vs heat temperature, for two condenser temperatures

Ejector characteristics

Boundary conditions		Ejector performance and design parameters					
Condensing temperature	Motive steam temperature	Pressure lift	Pressure ratio	Entrainment ratio	Ejector efficiency	Total length	Motive flow
[°C]	[°C]	[mbar]	[-]	[-]	[-]	[m]	[kg/s]
	150			0,46	0,213	3,92	0,345
30	110	36,3	7,0	0,35	0,215	4,23	0,461
	80			0,21	0,209	5,27	0,764
	150			1,68	0,318	3,52	0,095
15	110	10,9	2,8	1,42	0,344	3,64	0,113
	80			1,15	0,376	3,78	0,139

Entrainment ratio:

 $\frac{\dot{m}(\text{suction vapor})}{\dot{m}(\text{motive steam})}$

Comparison to commercial absorption chillers

Heat demand vs heat temperature, for two condenser temperatures

- Absorption chiller is weakly dependenton cooling water temperature
- Absorption chiller has highest COP when using 25 °C cooling water
- The situation is reversed if sufficiently cold cooling water is available:
- Ejector system has highest COP when using 10 °C cooling water

Summary

- Growing demand for environmentally friendly, temperature-independent snow production
- An ejector can be process integrated in vacuum ice slurry production
- Ejector chiller COP is highly dependent on condenser temperature
 - $-\,$ Becomes highly efficient for cooling water temperature of $10~^{
 m o}$ C and below
 - Even outcompetes absorption chillers
- Ejector chiller COP is weakly dependent on generator temperature
 - $-\,$ Highly efficient even with generator temperatures as low as $80~^{\mathrm{o}}\mathrm{C}$
 - Enables use of low-grade surplus heat from a range of industrial processes

Thank you.